DSP Tutorial II

Real-life Implementation

a passion for discovery

Collider-Accelerator Complex

Kevin Smith
Tom Hayes
Freddy Severino
Kevin Mernick
Denny Nembhard
Geetha Narayan

Outline

- High-level Algorithm flow
- Simulink with XILINX System Generator
- Real life example concept to proof
- Demo with HW-SW Co-Simulation
- Designs in development

Survey of System Designers

Mostly MATLAB	38.2%
MATLAB & Simulink	29,1%
Mostly C/C++	12.7%
None – just hand-code RTL or use IP	20.0%

Objective

Everything is better when it's simple

© 2013 Bank of America Corporation

- Demonstrate the integrated flow from system design to implementation of real-time DSP applications on FPGAs
 - Use MATLAB / Simulink to validate a simple DSP algorithm
 - Implement algorithm with XILINX System Generator
 - Verifying the DSP system using Simulink and HDL simulator
 - Preparing design for Co-Simulation on SP605 (Spartan-6) Board
 - Performing Hardware/Software Co-Simulation for the DSP system
- Developers with little FPGA design experience can quickly create FPGA implementations of DSP algorithms in a fraction of traditional RTL development times.

Outline

- High-level Algorithm flow
- Simulink with XILINX System Generator
- Real life example concept to proof
- Demo with HW-SW Co-Simulation
- Designs in development

System Generator Design Flow

System Generator Features

DSP modeling

Xilinx blockset contains about 100 IPs with functions such as

- signal processing (e.g., FIR filters, FFTs)
- error correction (e.g., Viterbi decoder, Reed-Solomon encoder/decoder)
- arithmetic, memories (e.g., FIFO, RAM, ROM), and digital logic
- Bit and cycle accurate floating and fixed-point implementation
- Automatic code generation of VHDL or Verilog from Simulink
 - Integrate legacy RTL
- Hardware co-simulation

Validate working hardware and accelerate simulations using

- Ethernet (10/100/Gigabit)
- JTAG communication between a hardware platform and Simulink
- Hardware / software co-design of embedded systems
 Build and debug DSP co-processors for the Xilinx MicroBlaze™ soft processor core

Design Flow Strategies

Algorithm Exploration

- useful for algorithm exploration and model analysis
- for architecture exploration such as HW/SW partitioning
- estimate the cost and performance of an implementation in hardware

Implementing Part of a Larger Design

- ideal to implement data paths and control
- less suited for sophisticated external interfaces
- design can be exported as an application specific IP to be integrated into a system

Implementing a Complete Design

- 'Generate' button instructs System Generator to translate the design
- HDL that implements the design
- HDL testbench that transforms results from Simulink simulations to be used in a logic simulator
- scripts that guide downstream tools, such as XST for synthesis

Outline

- High-level Algorithm flow
- Simulink with XILINX System Generator
- Real life example concept to proof
- Demo with HW-SW Co-Simulation
- Designs in development

Coherent Phase Detector for AGS Booster

Determine beam bunch phase with respect to net RF voltage per turn in a Heterodyne System

Hilbert-transform Phase Detection Scheme

Digital phase detecting method making use of 90° phase shift property of Hilbert transform.

- Heterodyne signals are sampled by A/Ds
- An analytic signal is generated from a real signal by using the Hilbert transform
- An FIR filter is used for the approximation of the Hilbert transform
- Signals are down-converted to DC by mixing
- After LPF and decimation phase difference is computed

Mathematical Computation

Received signals:

$$s_1(t) = a_1(t) \cos(\omega t + \Phi_1)$$

$$s_2(t) = a_2(t) \cos(\omega t + \Phi_2)$$

Hilbert Transform is equivalent to a 90° phase shift linear filter

$$H[s_1(t)] = a_1(t) \sin(\omega t + \Phi_1)$$

$$H[s_2(t)] = a_2(t) \sin(\omega t + \Phi_2)$$

Q =
$$s_1(t)$$
 . H[$s_2(t)$] - H[$s_1(t)$] . $s_2(t)$
= $a_1(t)$. $a_2(t)$. $sin(\Phi_2 - \Phi_1)$

$$I = s_1(t) \cdot s_2(t) + H[s_1(t)] \cdot H[s_2(t)]$$

= $a_1(t) \cdot a_2(t) \cdot \cos(\Phi_2 - \Phi_1)$

Phase Difference:

$$\Delta \Phi = (\Phi_2 - \Phi_1) = \tan^{-1}(Q/I)$$

AGS Phase Detector Simulink Model

Simulink Toolbox & Test Bench

_ - X

Bandpass Filter

Comb Filter

Halfband Filter

Library: DSP System Toolbox/Filtering/Filter Designs

Bandstop Filter

CIC Filter

Differentiator

ac

Office of any

Simulink Library Browser

-- Logic and Bit Operations -- Lookup Tables

Math Operations

Model Verification

Model-Wide Utilities

-- Ports & Subsystems -- Signal Attributes

User-Defined Functions

+ Additional Math & Discrete

Active-HDL Blockset
DSP System Toolbox

Signal Routing

>> Enter search term

- #4 🎬

Xilinx library of bit and cycle-true models

Basic Elements

DSP Blocks

AGS PD System Generator Model

Video on Firmware Generation

(2 min)

Outline

- High-level Algorithm flow
- Simulink with XILINX System Generator
- Real life example concept to proof
- Demo with HW-SW Co-Simulation (HW in the Loop)
- Designs in development

HW / SW Co-Simulation

HW / SW interfaces handled automatically by System Generator

Outline

- High-level Algorithm flow
- Simulink with XILINX System Generator
- Real life example concept to proof
- Demo with HW-SW Co-Simulation
- Designs in development

Bunch-by-Bunch Phase Detector IP

Fast feedback bunch phase measurement

Ref: Kevin Smith - Overview of LLRF Developments at the BNL Collider-Accelerator Complex

Bunch-by-Bunch Phase Detector System

Building Blocks of DSP Datapath

NCO Subsystem

- LUT based
- Tunable phase offset
- •Generate orthogonal reference signals for down conversion

•CIC (cascaded integrator comb) Filters

- •ideal for large rate changes and narrow band low pass filtering
- •implementation efficient no multipliers, only addition and subtraction are needed.

•CORDIC

many functional configurations:

- vector rotation (polar to rectangular),
- vector translation (rectangular to polar),
- Sin and Cos
- Sinh and Cosh
- Atan and Atanh
- Square Root

CIC Filter Specifications

- Narrow band low pass filter of consecutive bunches to determine phase and magnitude
- Bunch train at 9.386 MHz
- Support variable decimation rate R
- Processing clock 100 MHz
- •A/D sampling rate 100 Msps
- FPGA resources limited
- Parameterizable Bit Growth
- Resolve inherent memory issues when time multiplexing bunches

Figure 1: Basic Integrator

Figure 2: Basic Comb

Figure 3: Three Stage Decimating CIC Filter

Implementation

- Single stage CIC sufficient for phase and magnitude detection
- Throughput meets requirement
- Decimation rate set before comb stage
- FIFOs to handle accumulator. results from turn to turn
- CIC resource utilization (Virtex5)
 - •Slice Reg = 200
 - \bullet BRAM = 1
 - •DSP48E = 2

Custom 1-Stage CIC filter

HDL Co-Simulation

- Legacy (or new) HDL code can be imported into Simulink "black box"
- HDL is co-simulated transparently using industry-standard simulators like ModelSim or Active-HDL
- Single HDL simulator for multiple black boxes
- The time scale in HDL Simulator matches that in Simulink

Configuring a HDL Black-Box to import RTL

Future Development RF BPM Processor

Software Tools and Versions:

- MATLAB R2011a
 - Simulink
 - DSP System Toolbox
 - Signal Processing Design
 - Fixed-point Design
 - Fixed-point Blocks
- ISE Design Suite 13.2 System Edition
- Active-HDL 9.2

Demo Platform:

SPARTAN-6 FPGA SP605 Evaluation Kit